我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:主页 > 度量空间 >

求数学各种定理

归档日期:07-23       文本归类:度量空间      文章编辑:爱尚语录

  欧拉定理 (几何学)什么的,最好是高中能接受的,需要具体内容,不要名称!!!!谢谢了,给10个左右就可以.

  欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。

  欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。

  欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,σ,f (x)等等,至今沿用。

  欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有关系v+f-e=2,此式称为欧拉公式。v+f-e即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......

  (2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

  (3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。

  定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

  在欧拉公式中, f (p)=v+f-e 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。

  除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

  如:为什么正多面体只有5种? 足球与c60的关系?否有棱数为7的正多面体?等

  去掉一个面,使它变为平面图形,四面体顶点数v、棱数v与剩下的面数f1变形后都没有变。因此,要研究v、e和f关系,只需去掉一个面变为平面图形,证v+f1-e=1

  (1)去掉一条棱,就减少一个面,v+f1-e不变。依次去掉所有的面,变为“树枝形”。

  (2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,v+f1-e不变,直至只剩下一条棱。

  对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

  设多面体顶点数v,面数f,棱数e。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和σα

  设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有v个顶点中,有n个顶点在边上,v-n个顶点在中间。中间v-n个顶点处的内角和为(v-n)·3600,边上的n个顶点处的内角和(n-2)·1800。

  设一个二维几何图形的顶点数为v,划分区域数为ar,一笔画笔数为b,则有:

  问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?

  答:足球是多面体,满足欧拉公式f-e+v=2,其中f,e,v分别表示面,棱,顶点的个数

  设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么

  所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的

  对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的

  所以共有20块白皮子 在动力学里,欧拉旋转定理阐明,一个刚体在三维空间里,如果做至少有一点是固定点的位移,则此位移必相等于一个绕着 包含那固定点的固定轴 的旋转。这定理是以瑞士数学家莱昂哈德·欧拉命名的。用数学的术语,在三维空间内,任何共原点的两个座标系之间的关系,是一个绕着 包含原点的固定轴 的旋转。这并且意味着,两个旋转矩阵的乘积还是旋转矩阵。一个不是单位矩阵的旋转矩阵必有一个实数的本征值,而这本征值是 1 。 对应于这本征值的本征矢量与旋转所环绕的固定轴同线 四元数 2 参阅 3 参考文献 [编辑] 应用 [编辑] 旋转生成元 主要项目:旋转矩阵,旋转群 假若我们设定单位矢量 为固定轴,并且假设我们绕着这固定轴,做一个微小的角值 Δθ 的旋转; 取至第一次方近似值,旋转矩阵可以表述为:。 绕着固定轴做一个 角值的旋转,可以被视为许多绕着同样固定轴的连续的小旋转;每一个小旋转的角值为 ,是一个很大的数字。这样,绕着固定轴 角值的旋转,可以表述为:。 我们可以看到欧拉旋转定理基要的阐明: 所有的旋转都可以用这形式来表述。乘积 是这个旋转的生成元。用生成元来分析通常是较简易的方法,而不是用整个旋转矩阵。用生成元来分析的学问,被通认为旋转群的李代数。[编辑] 四元数 根据欧拉旋转定理,任何两个座标系的相对定向,可以由一组四个数字来设定;其中三个数字是方向余弦,用来设定特征矢量(固定轴);第四个数字是绕着固定轴旋转的角值。这样四个数字的一组称为四元数。如上所描述的四元数,并不介入复数。如果四元数被用来描述二个连续的旋转,则必须使用由威廉·卢云·哈密顿导出的非可换代数以复数来计算。在航空学的应用方面,通过四元数的方法来演算旋转,已经替待了方向余弦的方法。这是因为它们能减少所需的工作,以及它们能使舍入误差减到最小。并且,在 电脑图形学 里,四元数与四元数之间,简易执行 spherical linear interpolation 的能力是很有价值的。

  2013-12-18展开全部给你10个,好的给分吧1、勾股定理2、欧拉定理3、容斥原理4、柯西定理5、韦达定理6、不动点原理7、均值定理8、拉格朗日中值定理9、柯西中值定理10、弦切角定理11、乘法原理12、加法原理

本文链接:http://auxloisirs.com/duliangkongjian/590.html