我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:主页 > 度量空间 >

度量空间的拓扑空间

归档日期:07-20       文本归类:度量空间      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  度量空间具有许多良好性质,例如,它满足第一可数公理,它是豪斯多夫空间,正规空间,还是仿紧空间。此外对度量空间而言,紧致性等价于下列三条中的任一条:①任何可数开覆盖都有有限子覆盖;②每一无限子集都在空间中有聚点:③每一点列都有收敛子列。

  一个拓扑空间的拓扑结构在什么条件下能作为一个度量空间的拓扑?这是点集拓扑理论中的一个重要问题,称作度量化问题。对于度量化问题的两个最主要的结果一个是Urysohn度量化定理,即每一个第二可数的正规Hausdorff空间可度量化(通常会在点集拓扑的课程中介绍),另一个则是Bing-Nagata-Smirnov度量化定理,即一个拓扑空间可度量化当且仅当它是正则Hausdorff空间并且具有一个可数的局部有限基。

本文链接:http://auxloisirs.com/duliangkongjian/568.html