我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:主页 > 度量空间 >

度量矩阵的子空间

归档日期:07-04       文本归类:度量空间      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  因为我们在平时的研究中,整个线性空间太大了,我们需要缩小研究范围,某一个或几个特征子空间就够了。或者是模式分类时,每一个样本点就属于某个子空间,我们首先需要知道有哪些类,类的特点是什么,这就是特征子空间。当然对于协方差矩阵而言,特征值还具有能量属性,在清楚各个特征子空间的位置,我们可以通过某些变换改变这些子空间的空间分布。在系统研究中,还可以在清楚特征子空间分布后成功地实现系统或方程的解耦。呵呵,可能其用途很多很多,但关键的一点就是,我们必须认识空间的结构,在此基础上再结合对应的物理空间或几何空间的实际意义进行进一步的处理。

  人心苦不足,在知道了上面的东西之后,大家在想,可视的二维平面和三维立体空间中,为了研究向量的长度及向量和向量之间的角度,提出了内积的概念,在线性空间中,人们也对内积的概念作了延拓,于是在原先的线性空间添油加醋改装成了内积空间(分为实数的欧式空间和复内积空间),这里的油醋就是以下的四点:1、交换律;2、分配律;3、齐次性;4、非负性。向量自身的内积开二次根得到长度,两个向量内积除以两个向量的长度得到角度的余弦。所有这些都是与可视空间中的性质是一致的(可以参阅《由相容性想到的》)。这里要注意的是,它只给出了内积的约束,但在具体的向量空间中内积的计算形式却没有硬性规定,要想量化内积,很自然地就是要知道,量化的标准是什么,这就引出了度量矩阵(结合具体的内积计算式,计算得到的基的内积构成的矩阵)的概念。考虑到内积的非负性和交换律,度量矩阵必须是对称正定矩阵。这里也和前面一样,度量矩阵是在一定基下定义的,当基变化了,度量矩阵也会发生改变,相同的内积定义式在不同的基下得到的度量矩阵是合同的,呵呵,又多了一个概念。而且,对称变换、正交性也在内积这找到了家。

本文链接:http://auxloisirs.com/duliangkongjian/493.html